1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
|
// emhash8::HashMap for C++14/17
// version 1.6.5
// https://github.com/ktprime/emhash/blob/master/hash_table8.hpp
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2021-2023 Huang Yuanbing & bailuzhou AT 163.com
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE
#pragma once
#include <cstring>
#include <string>
#include <cstdlib>
#include <type_traits>
#include <cassert>
#include <utility>
#include <cstdint>
#include <functional>
#include <iterator>
#include <algorithm>
#undef EMH_NEW
#undef EMH_EMPTY
// likely/unlikely
#if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__)
# define EMH_LIKELY(condition) __builtin_expect(condition, 1)
# define EMH_UNLIKELY(condition) __builtin_expect(condition, 0)
#else
# define EMH_LIKELY(condition) condition
# define EMH_UNLIKELY(condition) condition
#endif
#define EMH_EMPTY(n) (0 > (int)(_index[n].next))
#define EMH_EQHASH(n, key_hash) (((size_type)(key_hash) & ~_mask) == (_index[n].slot & ~_mask))
//#define EMH_EQHASH(n, key_hash) ((size_type)(key_hash - _index[n].slot) & ~_mask) == 0
#define EMH_NEW(key, val, bucket, key_hash) \
new(_pairs + _num_filled) value_type(key, val); \
_etail = bucket; \
_index[bucket] = {bucket, _num_filled++ | ((size_type)(key_hash) & ~_mask)}
namespace emhash8 {
#ifndef EMH_DEFAULT_LOAD_FACTOR
constexpr static float EMH_DEFAULT_LOAD_FACTOR = 0.80f;
constexpr static float EMH_MIN_LOAD_FACTOR = 0.25f; //< 0.5
#endif
#if EMH_CACHE_LINE_SIZE < 32
constexpr static uint32_t EMH_CACHE_LINE_SIZE = 64;
#endif
template <typename KeyT, typename ValueT, typename HashT = std::hash<KeyT>, typename EqT = std::equal_to<KeyT>>
class HashMap
{
public:
using htype = HashMap<KeyT, ValueT, HashT, EqT>;
using value_type = std::pair<KeyT, ValueT>;
using key_type = KeyT;
using mapped_type = ValueT;
#ifdef EMH_SMALL_TYPE
using size_type = uint16_t;
#elif EMH_SIZE_TYPE == 0
using size_type = uint32_t;
#else
using size_type = size_t;
#endif
using hasher = HashT;
using key_equal = EqT;
constexpr static size_type INACTIVE = 0-1u;
//constexpr uint32_t END = 0-0x1u;
constexpr static size_type EAD = 2;
struct Index
{
size_type next;
size_type slot;
};
class const_iterator;
class iterator
{
public:
using iterator_category = std::bidirectional_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = typename htype::value_type;
using pointer = value_type*;
using const_pointer = const value_type* ;
using reference = value_type&;
using const_reference = const value_type&;
iterator() : kv_(nullptr) {}
iterator(const_iterator& cit) {
kv_ = cit.kv_;
}
iterator(const htype* hash_map, size_type bucket) {
kv_ = hash_map->_pairs + (int)bucket;
}
iterator& operator++()
{
kv_ ++;
return *this;
}
iterator operator++(int)
{
auto cur = *this; kv_ ++;
return cur;
}
iterator& operator--()
{
kv_ --;
return *this;
}
iterator operator--(int)
{
auto cur = *this; kv_ --;
return cur;
}
reference operator*() const { return *kv_; }
pointer operator->() const { return kv_; }
bool operator == (const iterator& rhs) const { return kv_ == rhs.kv_; }
bool operator != (const iterator& rhs) const { return kv_ != rhs.kv_; }
bool operator == (const const_iterator& rhs) const { return kv_ == rhs.kv_; }
bool operator != (const const_iterator& rhs) const { return kv_ != rhs.kv_; }
public:
value_type* kv_;
};
class const_iterator
{
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = typename htype::value_type;
using difference_type = std::ptrdiff_t;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
const_iterator(const iterator& it) {
kv_ = it.kv_;
}
const_iterator (const htype* hash_map, size_type bucket) {
kv_ = hash_map->_pairs + (int)bucket;
}
const_iterator& operator++()
{
kv_ ++;
return *this;
}
const_iterator operator++(int)
{
auto cur = *this; kv_ ++;
return cur;
}
const_iterator& operator--()
{
kv_ --;
return *this;
}
const_iterator operator--(int)
{
auto cur = *this; kv_ --;
return cur;
}
const_reference operator*() const { return *kv_; }
const_pointer operator->() const { return kv_; }
bool operator == (const iterator& rhs) const { return kv_ == rhs.kv_; }
bool operator != (const iterator& rhs) const { return kv_ != rhs.kv_; }
bool operator == (const const_iterator& rhs) const { return kv_ == rhs.kv_; }
bool operator != (const const_iterator& rhs) const { return kv_ != rhs.kv_; }
public:
const value_type* kv_;
};
void init(size_type bucket, float mlf = EMH_DEFAULT_LOAD_FACTOR)
{
_pairs = nullptr;
_index = nullptr;
_mask = _num_buckets = 0;
_num_filled = 0;
_mlf = (uint32_t)((1 << 27) / EMH_DEFAULT_LOAD_FACTOR);
max_load_factor(mlf);
rehash(bucket);
}
HashMap(size_type bucket = 2, float mlf = EMH_DEFAULT_LOAD_FACTOR)
{
init(bucket, mlf);
}
HashMap(const HashMap& rhs)
{
if (rhs.load_factor() > EMH_MIN_LOAD_FACTOR) {
_pairs = alloc_bucket((size_type)(rhs._num_buckets * rhs.max_load_factor()) + 4);
_index = alloc_index(rhs._num_buckets);
clone(rhs);
} else {
init(rhs._num_filled + 2, EMH_DEFAULT_LOAD_FACTOR);
for (auto it = rhs.begin(); it != rhs.end(); ++it)
insert_unique(it->first, it->second);
}
}
HashMap(HashMap&& rhs) noexcept
{
init(0);
*this = std::move(rhs);
}
HashMap(std::initializer_list<value_type> ilist)
{
init((size_type)ilist.size());
for (auto it = ilist.begin(); it != ilist.end(); ++it)
do_insert(*it);
}
template<class InputIt>
HashMap(InputIt first, InputIt last, size_type bucket_count=4)
{
init(std::distance(first, last) + bucket_count);
for (; first != last; ++first)
emplace(*first);
}
HashMap& operator=(const HashMap& rhs)
{
if (this == &rhs)
return *this;
if (rhs.load_factor() < EMH_MIN_LOAD_FACTOR) {
clear(); free(_pairs); _pairs = nullptr;
rehash(rhs._num_filled + 2);
for (auto it = rhs.begin(); it != rhs.end(); ++it)
insert_unique(it->first, it->second);
return *this;
}
clearkv();
if (_num_buckets != rhs._num_buckets) {
free(_pairs); free(_index);
_index = alloc_index(rhs._num_buckets);
_pairs = alloc_bucket((size_type)(rhs._num_buckets * rhs.max_load_factor()) + 4);
}
clone(rhs);
return *this;
}
HashMap& operator=(HashMap&& rhs) noexcept
{
if (this != &rhs) {
swap(rhs);
rhs.clear();
}
return *this;
}
template<typename Con>
bool operator == (const Con& rhs) const
{
if (size() != rhs.size())
return false;
for (auto it = begin(), last = end(); it != last; ++it) {
auto oi = rhs.find(it->first);
if (oi == rhs.end() || it->second != oi->second)
return false;
}
return true;
}
template<typename Con>
bool operator != (const Con& rhs) const { return !(*this == rhs); }
~HashMap() noexcept
{
clearkv();
free(_pairs);
free(_index);
_index = nullptr;
_pairs = nullptr;
}
void clone(const HashMap& rhs)
{
_hasher = rhs._hasher;
// _eq = rhs._eq;
_num_buckets = rhs._num_buckets;
_num_filled = rhs._num_filled;
_mlf = rhs._mlf;
_last = rhs._last;
_mask = rhs._mask;
#if EMH_HIGH_LOAD
_ehead = rhs._ehead;
#endif
_etail = rhs._etail;
auto opairs = rhs._pairs;
memcpy((char*)_index, (char*)rhs._index, (_num_buckets + EAD) * sizeof(Index));
if (is_copy_trivially()) {
memcpy((char*)_pairs, (char*)opairs, _num_filled * sizeof(value_type));
} else {
for (size_type slot = 0; slot < _num_filled; slot++)
new(_pairs + slot) value_type(opairs[slot]);
}
}
void swap(HashMap& rhs)
{
// std::swap(_eq, rhs._eq);
std::swap(_hasher, rhs._hasher);
std::swap(_pairs, rhs._pairs);
std::swap(_index, rhs._index);
std::swap(_num_buckets, rhs._num_buckets);
std::swap(_num_filled, rhs._num_filled);
std::swap(_mask, rhs._mask);
std::swap(_mlf, rhs._mlf);
std::swap(_last, rhs._last);
#if EMH_HIGH_LOAD
std::swap(_ehead, rhs._ehead);
#endif
std::swap(_etail, rhs._etail);
}
// -------------------------------------------------------------
iterator first() const { return {this, 0}; }
iterator last() const { return {this, _num_filled - 1}; }
value_type& front() { return _pairs[0]; }
const value_type& front() const { return _pairs[0]; }
value_type& back() { return _pairs[_num_filled - 1]; }
const value_type& back() const { return _pairs[_num_filled - 1]; }
void pop_front() { erase(begin()); } //TODO. only erase first without move last
void pop_back() { erase(last()); }
iterator begin() { return first(); }
const_iterator cbegin() const { return first(); }
const_iterator begin() const { return first(); }
iterator end() { return {this, _num_filled}; }
const_iterator cend() const { return {this, _num_filled}; }
const_iterator end() const { return cend(); }
const value_type* values() const { return _pairs; }
const Index* index() const { return _index; }
size_type size() const { return _num_filled; }
bool empty() const { return _num_filled == 0; }
size_type bucket_count() const { return _num_buckets; }
/// Returns average number of elements per bucket.
float load_factor() const { return static_cast<float>(_num_filled) / (_mask + 1); }
HashT& hash_function() const { return _hasher; }
EqT& key_eq() const { return _eq; }
void max_load_factor(float mlf)
{
if (mlf < 0.992 && mlf > EMH_MIN_LOAD_FACTOR) {
_mlf = (uint32_t)((1 << 27) / mlf);
if (_num_buckets > 0) rehash(_num_buckets);
}
}
constexpr float max_load_factor() const { return (1 << 27) / (float)_mlf; }
constexpr size_type max_size() const { return (1ull << (sizeof(size_type) * 8 - 1)); }
constexpr size_type max_bucket_count() const { return max_size(); }
#if EMH_STATIS
//Returns the bucket number where the element with key k is located.
size_type bucket(const KeyT& key) const
{
const auto bucket = hash_bucket(key);
const auto next_bucket = _index[bucket].next;
if ((int)next_bucket < 0)
return 0;
else if (bucket == next_bucket)
return bucket + 1;
return hash_main(bucket) + 1;
}
//Returns the number of elements in bucket n.
size_type bucket_size(const size_type bucket) const
{
auto next_bucket = _index[bucket].next;
if ((int)next_bucket < 0)
return 0;
next_bucket = hash_main(bucket);
size_type ibucket_size = 1;
//iterator each item in current main bucket
while (true) {
const auto nbucket = _index[next_bucket].next;
if (nbucket == next_bucket) {
break;
}
ibucket_size ++;
next_bucket = nbucket;
}
return ibucket_size;
}
size_type get_main_bucket(const size_type bucket) const
{
auto next_bucket = _index[bucket].next;
if ((int)next_bucket < 0)
return INACTIVE;
return hash_main(bucket);
}
size_type get_diss(size_type bucket, size_type next_bucket, const size_type slots) const
{
auto pbucket = reinterpret_cast<uint64_t>(&_pairs[bucket]);
auto pnext = reinterpret_cast<uint64_t>(&_pairs[next_bucket]);
if (pbucket / EMH_CACHE_LINE_SIZE == pnext / EMH_CACHE_LINE_SIZE)
return 0;
size_type diff = pbucket > pnext ? (pbucket - pnext) : (pnext - pbucket);
if (diff / EMH_CACHE_LINE_SIZE < slots - 1)
return diff / EMH_CACHE_LINE_SIZE + 1;
return slots - 1;
}
int get_bucket_info(const size_type bucket, size_type steps[], const size_type slots) const
{
auto next_bucket = _index[bucket].next;
if ((int)next_bucket < 0)
return -1;
const auto main_bucket = hash_main(bucket);
if (next_bucket == main_bucket)
return 1;
else if (main_bucket != bucket)
return 0;
steps[get_diss(bucket, next_bucket, slots)] ++;
size_type ibucket_size = 2;
//find a empty and linked it to tail
while (true) {
const auto nbucket = _index[next_bucket].next;
if (nbucket == next_bucket)
break;
steps[get_diss(nbucket, next_bucket, slots)] ++;
ibucket_size ++;
next_bucket = nbucket;
}
return (int)ibucket_size;
}
void dump_statics() const
{
const size_type slots = 128;
size_type buckets[slots + 1] = {0};
size_type steps[slots + 1] = {0};
for (size_type bucket = 0; bucket < _num_buckets; ++bucket) {
auto bsize = get_bucket_info(bucket, steps, slots);
if (bsize > 0)
buckets[bsize] ++;
}
size_type sumb = 0, collision = 0, sumc = 0, finds = 0, sumn = 0;
puts("============== buckets size ration =========");
for (size_type i = 0; i < sizeof(buckets) / sizeof(buckets[0]); i++) {
const auto bucketsi = buckets[i];
if (bucketsi == 0)
continue;
sumb += bucketsi;
sumn += bucketsi * i;
collision += bucketsi * (i - 1);
finds += bucketsi * i * (i + 1) / 2;
printf(" %2u %8u %2.2lf| %.2lf\n", i, bucketsi, bucketsi * 100.0 * i / _num_filled, sumn * 100.0 / _num_filled);
}
puts("========== collision miss ration ===========");
for (size_type i = 0; i < sizeof(steps) / sizeof(steps[0]); i++) {
sumc += steps[i];
if (steps[i] <= 2)
continue;
printf(" %2u %8u %.2lf %.2lf\n", i, steps[i], steps[i] * 100.0 / collision, sumc * 100.0 / collision);
}
if (sumb == 0) return;
printf(" _num_filled/bucket_size/packed collision/cache_miss/hit_find = %u/%.2lf/%zd/ %.2lf%%/%.2lf%%/%.2lf\n",
_num_filled, _num_filled * 1.0 / sumb, sizeof(value_type), (collision * 100.0 / _num_filled), (collision - steps[0]) * 100.0 / _num_filled, finds * 1.0 / _num_filled);
assert(sumn == _num_filled);
assert(sumc == collision);
puts("============== buckets size end =============");
}
#endif
void pack_zero(ValueT zero)
{
_pairs[_num_filled] = {KeyT(), zero};
}
// ------------------------------------------------------------
template<typename K=KeyT>
iterator find(const K& key) noexcept
{
return {this, find_filled_slot(key)};
}
template<typename K=KeyT>
const_iterator find(const K& key) const noexcept
{
return {this, find_filled_slot(key)};
}
template<typename K=KeyT>
ValueT& at(const K& key)
{
const auto slot = find_filled_slot(key);
//throw
return _pairs[slot].second;
}
template<typename K=KeyT>
const ValueT& at(const K& key) const
{
const auto slot = find_filled_slot(key);
//throw
return _pairs[slot].second;
}
const ValueT& index(const uint32_t index) const
{
return _pairs[index].second;
}
ValueT& index(const uint32_t index)
{
return _pairs[index].second;
}
template<typename K=KeyT>
bool contains(const K& key) const noexcept
{
return find_filled_slot(key) != _num_filled;
}
template<typename K=KeyT>
size_type count(const K& key) const noexcept
{
return find_filled_slot(key) == _num_filled ? 0 : 1;
//return find_sorted_bucket(key) == END ? 0 : 1;
//return find_hash_bucket(key) == END ? 0 : 1;
}
template<typename K=KeyT>
std::pair<iterator, iterator> equal_range(const K& key)
{
const auto found = find(key);
if (found.second == _num_filled)
return { found, found };
else
return { found, std::next(found) };
}
void merge(HashMap& rhs)
{
if (empty()) {
*this = std::move(rhs);
return;
}
for (auto rit = rhs.begin(); rit != rhs.end(); ) {
auto fit = find(rit->first);
if (fit == end()) {
insert_unique(rit->first, std::move(rit->second));
rit = rhs.erase(rit);
} else {
++rit;
}
}
}
/// Returns the matching ValueT or nullptr if k isn't found.
bool try_get(const KeyT& key, ValueT& val) const noexcept
{
const auto slot = find_filled_slot(key);
const auto found = slot != _num_filled;
if (found) {
val = _pairs[slot].second;
}
return found;
}
/// Returns the matching ValueT or nullptr if k isn't found.
ValueT* try_get(const KeyT& key) noexcept
{
const auto slot = find_filled_slot(key);
return slot != _num_filled ? &_pairs[slot].second : nullptr;
}
/// Const version of the above
ValueT* try_get(const KeyT& key) const noexcept
{
const auto slot = find_filled_slot(key);
return slot != _num_filled ? &_pairs[slot].second : nullptr;
}
/// set value if key exist
bool try_set(const KeyT& key, const ValueT& val) noexcept
{
const auto slot = find_filled_slot(key);
if (slot == _num_filled)
return false;
_pairs[slot].second = val;
return true;
}
/// set value if key exist
bool try_set(const KeyT& key, ValueT&& val) noexcept
{
const auto slot = find_filled_slot(key);
if (slot == _num_filled)
return false;
_pairs[slot].second = std::move(val);
return true;
}
/// Convenience function.
ValueT get_or_return_default(const KeyT& key) const noexcept
{
const auto slot = find_filled_slot(key);
return slot == _num_filled ? ValueT() : _pairs[slot].second;
}
// -----------------------------------------------------
std::pair<iterator, bool> do_insert(const value_type& value) noexcept
{
const auto key_hash = hash_key(value.first);
const auto bucket = find_or_allocate(value.first, key_hash);
const auto bempty = EMH_EMPTY(bucket);
if (bempty) {
EMH_NEW(value.first, value.second, bucket, key_hash);
}
const auto slot = _index[bucket].slot & _mask;
return { {this, slot}, bempty };
}
std::pair<iterator, bool> do_insert(value_type&& value) noexcept
{
const auto key_hash = hash_key(value.first);
const auto bucket = find_or_allocate(value.first, key_hash);
const auto bempty = EMH_EMPTY(bucket);
if (bempty) {
EMH_NEW(std::move(value.first), std::move(value.second), bucket, key_hash);
}
const auto slot = _index[bucket].slot & _mask;
return { {this, slot}, bempty };
}
template<typename K, typename V>
std::pair<iterator, bool> do_insert(K&& key, V&& val) noexcept
{
const auto key_hash = hash_key(key);
const auto bucket = find_or_allocate(key, key_hash);
const auto bempty = EMH_EMPTY(bucket);
if (bempty) {
EMH_NEW(std::forward<K>(key), std::forward<V>(val), bucket, key_hash);
}
const auto slot = _index[bucket].slot & _mask;
return { {this, slot}, bempty };
}
template<typename K, typename V>
std::pair<iterator, bool> do_assign(K&& key, V&& val) noexcept
{
check_expand_need();
const auto key_hash = hash_key(key);
const auto bucket = find_or_allocate(key, key_hash);
const auto bempty = EMH_EMPTY(bucket);
if (bempty) {
EMH_NEW(std::forward<K>(key), std::forward<V>(val), bucket, key_hash);
} else {
_pairs[_index[bucket].slot & _mask].second = std::move(val);
}
const auto slot = _index[bucket].slot & _mask;
return { {this, slot}, bempty };
}
std::pair<iterator, bool> insert(const value_type& p)
{
check_expand_need();
return do_insert(p);
}
std::pair<iterator, bool> insert(value_type && p)
{
check_expand_need();
return do_insert(std::move(p));
}
void insert(std::initializer_list<value_type> ilist)
{
reserve(ilist.size() + _num_filled, false);
for (auto it = ilist.begin(); it != ilist.end(); ++it)
do_insert(*it);
}
template <typename Iter>
void insert(Iter first, Iter last)
{
reserve(std::distance(first, last) + _num_filled, false);
for (; first != last; ++first)
do_insert(first->first, first->second);
}
#if 0
template <typename Iter>
void insert_unique(Iter begin, Iter end)
{
reserve(std::distance(begin, end) + _num_filled, false);
for (; begin != end; ++begin) {
insert_unique(*begin);
}
}
#endif
template<typename K, typename V>
size_type insert_unique(K&& key, V&& val)
{
check_expand_need();
const auto key_hash = hash_key(key);
auto bucket = find_unique_bucket(key_hash);
EMH_NEW(std::forward<K>(key), std::forward<V>(val), bucket, key_hash);
return bucket;
}
size_type insert_unique(value_type&& value)
{
return insert_unique(std::move(value.first), std::move(value.second));
}
size_type insert_unique(const value_type& value)
{
return insert_unique(value.first, value.second);
}
template <class... Args>
std::pair<iterator, bool> emplace(Args&&... args) noexcept
{
check_expand_need();
return do_insert(std::forward<Args>(args)...);
}
//no any optimize for position
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{
(void)hint;
check_expand_need();
return do_insert(std::forward<Args>(args)...).first;
}
template<class... Args>
std::pair<iterator, bool> try_emplace(const KeyT& k, Args&&... args)
{
check_expand_need();
return do_insert(k, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(KeyT&& k, Args&&... args)
{
check_expand_need();
return do_insert(std::move(k), std::forward<Args>(args)...);
}
template <class... Args>
size_type emplace_unique(Args&&... args)
{
return insert_unique(std::forward<Args>(args)...);
}
std::pair<iterator, bool> insert_or_assign(const KeyT& key, ValueT&& val) { return do_assign(key, std::forward<ValueT>(val)); }
std::pair<iterator, bool> insert_or_assign(KeyT&& key, ValueT&& val) { return do_assign(std::move(key), std::forward<ValueT>(val)); }
/// Return the old value or ValueT() if it didn't exist.
ValueT set_get(const KeyT& key, const ValueT& val)
{
check_expand_need();
const auto key_hash = hash_key(key);
const auto bucket = find_or_allocate(key, key_hash);
if (EMH_EMPTY(bucket)) {
EMH_NEW(key, val, bucket, key_hash);
return ValueT();
} else {
const auto slot = _index[bucket].slot & _mask;
ValueT old_value(val);
std::swap(_pairs[slot].second, old_value);
return old_value;
}
}
/// Like std::map<KeyT, ValueT>::operator[].
ValueT& operator[](const KeyT& key) noexcept
{
check_expand_need();
const auto key_hash = hash_key(key);
const auto bucket = find_or_allocate(key, key_hash);
if (EMH_EMPTY(bucket)) {
/* Check if inserting a value rather than overwriting an old entry */
EMH_NEW(key, std::move(ValueT()), bucket, key_hash);
}
const auto slot = _index[bucket].slot & _mask;
return _pairs[slot].second;
}
ValueT& operator[](KeyT&& key) noexcept
{
check_expand_need();
const auto key_hash = hash_key(key);
const auto bucket = find_or_allocate(key, key_hash);
if (EMH_EMPTY(bucket)) {
EMH_NEW(std::move(key), std::move(ValueT()), bucket, key_hash);
}
const auto slot = _index[bucket].slot & _mask;
return _pairs[slot].second;
}
/// Erase an element from the hash table.
/// return 0 if element was not found
size_type erase(const KeyT& key) noexcept
{
const auto key_hash = hash_key(key);
const auto sbucket = find_filled_bucket(key, key_hash);
if (sbucket == INACTIVE)
return 0;
const auto main_bucket = key_hash & _mask;
erase_slot(sbucket, (size_type)main_bucket);
return 1;
}
//iterator erase(const_iterator begin_it, const_iterator end_it)
iterator erase(const const_iterator& cit) noexcept
{
const auto slot = (size_type)(cit.kv_ - _pairs);
size_type main_bucket;
const auto sbucket = find_slot_bucket(slot, main_bucket); //TODO
erase_slot(sbucket, main_bucket);
return {this, slot};
}
//only last >= first
iterator erase(const_iterator first, const_iterator last) noexcept
{
auto esize = long(last.kv_ - first.kv_);
auto tsize = long((_pairs + _num_filled) - last.kv_); //last to tail size
auto next = first;
while (tsize -- > 0) {
if (esize-- <= 0)
break;
next = ++erase(next);
}
//fast erase from last
next = this->last();
while (esize -- > 0)
next = --erase(next);
return {this, size_type(next.kv_ - _pairs)};
}
template<typename Pred>
size_type erase_if(Pred pred)
{
auto old_size = size();
for (auto it = begin(); it != end();) {
if (pred(*it))
it = erase(it);
else
++it;
}
return old_size - size();
}
static constexpr bool is_triviall_destructable()
{
#if __cplusplus >= 201402L || _MSC_VER > 1600
return !(std::is_trivially_destructible<KeyT>::value && std::is_trivially_destructible<ValueT>::value);
#else
return !(std::is_pod<KeyT>::value && std::is_pod<ValueT>::value);
#endif
}
static constexpr bool is_copy_trivially()
{
#if __cplusplus >= 201103L || _MSC_VER > 1600
return (std::is_trivially_copyable<KeyT>::value && std::is_trivially_copyable<ValueT>::value);
#else
return (std::is_pod<KeyT>::value && std::is_pod<ValueT>::value);
#endif
}
void clearkv()
{
if (is_triviall_destructable()) {
while (_num_filled --)
_pairs[_num_filled].~value_type();
}
}
/// Remove all elements, keeping full capacity.
void clear() noexcept
{
clearkv();
if (_num_filled > 0)
memset((char*)_index, INACTIVE, sizeof(_index[0]) * _num_buckets);
_last = _num_filled = 0;
_etail = INACTIVE;
#if EMH_HIGH_LOAD
_ehead = 0;
#endif
}
void shrink_to_fit(const float min_factor = EMH_DEFAULT_LOAD_FACTOR / 4)
{
if (load_factor() < min_factor && bucket_count() > 10) //safe guard
rehash(_num_filled + 1);
}
#if EMH_HIGH_LOAD
#define EMH_PREVET(i, n) i[n].slot
void set_empty()
{
auto prev = 0;
for (int32_t bucket = 1; bucket < _num_buckets; ++bucket) {
if (EMH_EMPTY(bucket)) {
if (prev != 0) {
EMH_PREVET(_index, bucket) = prev;
_index[_prev].next = -bucket;
}
else
_ehead = bucket;
prev = bucket;
}
}
EMH_PREVET(_index, _ehead) = prev;
_index[_prev].next = 0-_ehead;
_ehead = 0-_index[_ehead].next;
}
void clear_empty()
{
auto prev = EMH_PREVET(_index, _ehead);
while (prev != _ehead) {
_index[_prev].next = INACTIVE;
prev = EMH_PREVET(_index, prev);
}
_index[_ehead].next = INACTIVE;
_ehead = 0;
}
//prev-ehead->next
size_type pop_empty(const size_type bucket)
{
const auto prev_bucket = EMH_PREVET(_index, bucket);
const int next_bucket = 0-_index[bucket].next;
EMH_PREVET(_index, next_bucket) = prev_bucket;
_index[prev_bucket].next = -next_bucket;
_ehead = next_bucket;
return bucket;
}
//ehead->bucket->next
void push_empty(const int32_t bucket)
{
const int next_bucket = 0-_index[_ehead].next;
assert(next_bucket > 0);
EMH_PREVET(_index, bucket) = _ehead;
_index[bucket].next = -next_bucket;
EMH_PREVET(_index, next_bucket) = bucket;
_index[_ehead].next = -bucket;
// _ehead = bucket;
}
#endif
/// Make room for this many elements
bool reserve(uint64_t num_elems, bool force)
{
(void)force;
#if EMH_HIGH_LOAD == 0
const auto required_buckets = num_elems * _mlf >> 27;
if (EMH_LIKELY(required_buckets < _mask)) // && !force
return false;
#elif EMH_HIGH_LOAD
const auto required_buckets = num_elems + num_elems * 1 / 9;
if (EMH_LIKELY(required_buckets < _mask))
return false;
else if (_num_buckets < 16 && _num_filled < _num_buckets)
return false;
else if (_num_buckets > EMH_HIGH_LOAD) {
if (_ehead == 0) {
set_empty();
return false;
} else if (/*_num_filled + 100 < _num_buckets && */_index[_ehead].next != 0-_ehead) {
return false;
}
}
#endif
#if EMH_STATIS
if (_num_filled > EMH_STATIS) dump_statics();
#endif
//assert(required_buckets < max_size());
rehash(required_buckets + 2);
return true;
}
static value_type* alloc_bucket(size_type num_buckets)
{
#ifdef EMH_ALLOC
auto new_pairs = aligned_alloc(32, (uint64_t)num_buckets * sizeof(value_type));
#else
auto new_pairs = malloc((uint64_t)num_buckets * sizeof(value_type));
#endif
return (value_type *)(new_pairs);
}
static Index* alloc_index(size_type num_buckets)
{
auto new_index = (char*)malloc((uint64_t)(EAD + num_buckets) * sizeof(Index));
return (Index *)(new_index);
}
bool reserve(size_type required_buckets) noexcept
{
if (_num_filled != required_buckets)
return reserve(required_buckets, true);
_last = 0;
#if EMH_HIGH_LOAD
_ehead = 0;
#endif
#if EMH_SORT
std::sort(_pairs, _pairs + _num_filled, [this](const value_type & l, const value_type & r) {
const auto hashl = (size_type)hash_key(l.first) & _mask, hashr = (size_type)hash_key(r.first) & _mask;
return hashl < hashr;
//return l.first < r.first;
});
#endif
memset((char*)_index, INACTIVE, sizeof(_index[0]) * _num_buckets);
for (size_type slot = 0; slot < _num_filled; slot++) {
const auto& key = _pairs[slot].first;
const auto key_hash = hash_key(key);
const auto bucket = size_type(key_hash & _mask);
auto& next_bucket = _index[bucket].next;
if ((int)next_bucket < 0)
_index[bucket] = {1, slot | ((size_type)(key_hash) & ~_mask)};
else {
_index[bucket].slot |= (size_type)(key_hash) & ~_mask;
next_bucket ++;
}
}
return true;
}
void rebuild(size_type num_buckets) noexcept
{
free(_index);
auto new_pairs = (value_type*)alloc_bucket((size_type)(num_buckets * max_load_factor()) + 4);
if (is_copy_trivially()) {
if (_pairs)
memcpy((char*)new_pairs, (char*)_pairs, _num_filled * sizeof(value_type));
} else {
for (size_type slot = 0; slot < _num_filled; slot++) {
new(new_pairs + slot) value_type(std::move(_pairs[slot]));
if (is_triviall_destructable())
_pairs[slot].~value_type();
}
}
free(_pairs);
_pairs = new_pairs;
_index = (Index*)alloc_index (num_buckets);
memset((char*)_index, INACTIVE, sizeof(_index[0]) * num_buckets);
memset((char*)(_index + num_buckets), 0, sizeof(_index[0]) * EAD);
}
void rehash(uint64_t required_buckets)
{
if (required_buckets < _num_filled)
return;
assert(required_buckets < max_size());
auto num_buckets = _num_filled > (1u << 16) ? (1u << 16) : 4u;
while (num_buckets < required_buckets) { num_buckets *= 2; }
#if EMH_SAVE_MEM
if (sizeof(KeyT) < sizeof(size_type) && num_buckets >= (1ul << (2 * 8)))
num_buckets = 2ul << (sizeof(KeyT) * 8);
#endif
#if EMH_REHASH_LOG
auto last = _last;
size_type collision = 0;
#endif
#if EMH_HIGH_LOAD
_ehead = 0;
#endif
_last = _mask / 4;
_mask = num_buckets - 1;
#if EMH_PACK_TAIL > 1
_last = _mask;
num_buckets += num_buckets * EMH_PACK_TAIL / 100; //add more 5-10%
#endif
_num_buckets = num_buckets;
rebuild(num_buckets);
#ifdef EMH_SORT
std::sort(_pairs, _pairs + _num_filled, [this](const value_type & l, const value_type & r) {
const auto hashl = hash_key(l.first), hashr = hash_key(r.first);
auto diff = int64_t((hashl & _mask) - (hashr & _mask));
if (diff != 0)
return diff < 0;
return hashl < hashr;
// return l.first < r.first;
});
#endif
_etail = INACTIVE;
for (size_type slot = 0; slot < _num_filled; ++slot) {
const auto& key = _pairs[slot].first;
const auto key_hash = hash_key(key);
const auto bucket = find_unique_bucket(key_hash);
_index[bucket] = { bucket, slot | ((size_type)(key_hash) & ~_mask) };
#if EMH_REHASH_LOG
if (bucket != hash_main(bucket))
collision ++;
#endif
}
#if EMH_REHASH_LOG
if (_num_filled > EMH_REHASH_LOG) {
auto mbucket = _num_filled - collision;
char buff[255] = {0};
sprintf(buff, " _num_filled/aver_size/K.V/pack/collision|last = %u/%.2lf/%s.%s/%zd|%.2lf%%,%.2lf%%",
_num_filled, double (_num_filled) / mbucket, typeid(KeyT).name(), typeid(ValueT).name(), sizeof(_pairs[0]), collision * 100.0 / _num_filled, last * 100.0 / _num_buckets);
#ifdef EMH_LOG
static uint32_t ihashs = 0; EMH_LOG() << "hash_nums = " << ihashs ++ << "|" <<__FUNCTION__ << "|" << buff << endl;
#else
puts(buff);
#endif
}
#endif
}
private:
// Can we fit another element?
bool check_expand_need()
{
return reserve(_num_filled, false);
}
size_type slot_to_bucket(const size_type slot) const noexcept
{
size_type main_bucket;
return find_slot_bucket(slot, main_bucket); //TODO
}
//very slow
void erase_slot(const size_type sbucket, const size_type main_bucket) noexcept
{
const auto slot = _index[sbucket].slot & _mask;
const auto ebucket = erase_bucket(sbucket, main_bucket);
const auto last_slot = --_num_filled;
if (EMH_LIKELY(slot != last_slot)) {
const auto last_bucket = (_etail == INACTIVE || ebucket == _etail)
? slot_to_bucket(last_slot) : _etail;
_pairs[slot] = std::move(_pairs[last_slot]);
_index[last_bucket].slot = slot | (_index[last_bucket].slot & ~_mask);
}
if (is_triviall_destructable())
_pairs[last_slot].~value_type();
_etail = INACTIVE;
_index[ebucket] = {INACTIVE, 0};
#if EMH_HIGH_LOAD
if (_ehead) {
if (10 * _num_filled < 8 * _num_buckets)
clear_empty();
else if (ebucket)
push_empty(ebucket);
}
#endif
}
size_type erase_bucket(const size_type bucket, const size_type main_bucket) noexcept
{
const auto next_bucket = _index[bucket].next;
if (bucket == main_bucket) {
if (main_bucket != next_bucket) {
const auto nbucket = _index[next_bucket].next;
_index[main_bucket] = {
(nbucket == next_bucket) ? main_bucket : nbucket,
_index[next_bucket].slot
};
}
return next_bucket;
}
const auto prev_bucket = find_prev_bucket(main_bucket, bucket);
_index[prev_bucket].next = (bucket == next_bucket) ? prev_bucket : next_bucket;
return bucket;
}
// Find the slot with this key, or return bucket size
size_type find_slot_bucket(const size_type slot, size_type& main_bucket) const
{
const auto key_hash = hash_key(_pairs[slot].first);
const auto bucket = main_bucket = size_type(key_hash & _mask);
if (slot == (_index[bucket].slot & _mask))
return bucket;
auto next_bucket = _index[bucket].next;
while (true) {
if (EMH_LIKELY(slot == (_index[next_bucket].slot & _mask)))
return next_bucket;
next_bucket = _index[next_bucket].next;
}
return INACTIVE;
}
// Find the slot with this key, or return bucket size
size_type find_filled_bucket(const KeyT& key, uint64_t key_hash) const noexcept
{
const auto bucket = size_type(key_hash & _mask);
auto next_bucket = _index[bucket].next;
if (EMH_UNLIKELY((int)next_bucket < 0))
return INACTIVE;
if (EMH_EQHASH(bucket, key_hash)) {
const auto slot = _index[bucket].slot & _mask;
if (EMH_LIKELY(_eq(key, _pairs[slot].first)))
return bucket;
}
if (next_bucket == bucket)
return INACTIVE;
while (true) {
if (EMH_EQHASH(next_bucket, key_hash)) {
const auto slot = _index[next_bucket].slot & _mask;
if (EMH_LIKELY(_eq(key, _pairs[slot].first)))
return next_bucket;
}
const auto nbucket = _index[next_bucket].next;
if (nbucket == next_bucket)
return INACTIVE;
next_bucket = nbucket;
}
return INACTIVE;
}
// Find the slot with this key, or return bucket size
template<typename K=KeyT>
size_type find_filled_slot(const K& key) const noexcept
{
const auto key_hash = hash_key(key);
const auto bucket = size_type(key_hash & _mask);
auto next_bucket = _index[bucket].next;
if ((int)next_bucket < 0)
return _num_filled;
if (EMH_EQHASH(bucket, key_hash)) {
const auto slot = _index[bucket].slot & _mask;
if (EMH_LIKELY(_eq(key, _pairs[slot].first)))
return slot;
}
if (next_bucket == bucket)
return _num_filled;
while (true) {
if (EMH_EQHASH(next_bucket, key_hash)) {
const auto slot = _index[next_bucket].slot & _mask;
if (EMH_LIKELY(_eq(key, _pairs[slot].first)))
return slot;
}
const auto nbucket = _index[next_bucket].next;
if (nbucket == next_bucket)
return _num_filled;
next_bucket = nbucket;
}
return _num_filled;
}
#if EMH_SORT
size_type find_hash_bucket(const KeyT& key) const noexcept
{
const auto key_hash = hash_key(key);
const auto bucket = size_type(key_hash & _mask);
const auto next_bucket = _index[bucket].next;
if ((int)next_bucket < 0)
return END;
auto slot = _index[bucket].slot & _mask;
if (_eq(key, _pairs[slot++].first))
return slot;
else if (next_bucket == bucket)
return END;
while (true) {
const auto& okey = _pairs[slot++].first;
if (_eq(key, okey))
return slot;
const auto hasho = hash_key(okey);
if ((hasho & _mask) != bucket)
break;
else if (hasho > key_hash)
break;
else if (EMH_UNLIKELY(slot >= _num_filled))
break;
}
return END;
}
//only for find/can not insert
size_type find_sorted_bucket(const KeyT& key) const noexcept
{
const auto key_hash = hash_key(key);
const auto bucket = size_type(key_hash & _mask);
const auto slots = (int)(_index[bucket].next); //TODO
if (slots < 0 /**|| key < _pairs[slot].first*/)
return END;
const auto slot = _index[bucket].slot & _mask;
auto ormask = _index[bucket].slot & ~_mask;
auto hmask = (size_type)(key_hash) & ~_mask;
if ((hmask | ormask) != ormask)
return END;
if (_eq(key, _pairs[slot].first))
return slot;
else if (slots == 1 || key < _pairs[slot].first)
return END;
#if EMH_SORT
if (key < _pairs[slot].first || key > _pairs[slots + slot - 1].first)
return END;
#endif
for (size_type i = 1; i < slots; ++i) {
const auto& okey = _pairs[slot + i].first;
if (_eq(key, okey))
return slot + i;
// else if (okey > key)
// return END;
}
return END;
}
#endif
//kick out bucket and find empty to occpuy
//it will break the orgin link and relnik again.
//before: main_bucket-->prev_bucket --> bucket --> next_bucket
//atfer : main_bucket-->prev_bucket --> (removed)--> new_bucket--> next_bucket
size_type kickout_bucket(const size_type kmain, const size_type bucket) noexcept
{
const auto next_bucket = _index[bucket].next;
const auto new_bucket = find_empty_bucket(next_bucket, 2);
const auto prev_bucket = find_prev_bucket(kmain, bucket);
const auto last = next_bucket == bucket ? new_bucket : next_bucket;
_index[new_bucket] = {last, _index[bucket].slot};
_index[prev_bucket].next = new_bucket;
_index[bucket].next = INACTIVE;
return bucket;
}
/*
** inserts a new key into a hash table; first, check whether key's main
** bucket/position is free. If not, check whether colliding node/bucket is in its main
** position or not: if it is not, move colliding bucket to an empty place and
** put new key in its main position; otherwise (colliding bucket is in its main
** position), new key goes to an empty position.
*/
template<typename K=KeyT>
size_type find_or_allocate(const K& key, uint64_t key_hash) noexcept
{
const auto bucket = size_type(key_hash & _mask);
auto next_bucket = _index[bucket].next;
if ((int)next_bucket < 0) {
#if EMH_HIGH_LOAD
if (next_bucket != INACTIVE)
pop_empty(bucket);
#endif
return bucket;
}
const auto slot = _index[bucket].slot & _mask;
if (EMH_EQHASH(bucket, key_hash))
if (EMH_LIKELY(_eq(key, _pairs[slot].first)))
return bucket;
//check current bucket_key is in main bucket or not
const auto kmain = hash_bucket(_pairs[slot].first);
if (kmain != bucket)
return kickout_bucket(kmain, bucket);
else if (next_bucket == bucket)
return _index[next_bucket].next = find_empty_bucket(next_bucket, 1);
uint32_t csize = 1;
//find next linked bucket and check key
while (true) {
const auto eslot = _index[next_bucket].slot & _mask;
if (EMH_EQHASH(next_bucket, key_hash)) {
if (EMH_LIKELY(_eq(key, _pairs[eslot].first)))
return next_bucket;
}
csize += 1;
const auto nbucket = _index[next_bucket].next;
if (nbucket == next_bucket)
break;
next_bucket = nbucket;
}
//find a empty and link it to tail
const auto new_bucket = find_empty_bucket(next_bucket, csize);
return _index[next_bucket].next = new_bucket;
}
size_type find_unique_bucket(uint64_t key_hash) noexcept
{
const auto bucket = size_type(key_hash & _mask);
auto next_bucket = _index[bucket].next;
if ((int)next_bucket < 0) {
#if EMH_HIGH_LOAD
if (next_bucket != INACTIVE)
pop_empty(bucket);
#endif
return bucket;
}
//check current bucket_key is in main bucket or not
const auto kmain = hash_main(bucket);
if (EMH_UNLIKELY(kmain != bucket))
return kickout_bucket(kmain, bucket);
else if (EMH_UNLIKELY(next_bucket != bucket))
next_bucket = find_last_bucket(next_bucket);
return _index[next_bucket].next = find_empty_bucket(next_bucket, 2);
}
/***
Different probing techniques usually provide a trade-off between memory locality and avoidance of clustering.
Since Robin Hood hashing is relatively resilient to clustering (both primary and secondary), linear probing is the most cache friendly alternativeis typically used.
It's the core algorithm of this hash map with highly optimization/benchmark.
normaly linear probing is inefficient with high load factor, it use a new 3-way linear
probing strategy to search empty slot. from benchmark even the load factor > 0.9, it's more 2-3 timer fast than
one-way search strategy.
1. linear or quadratic probing a few cache line for less cache miss from input slot "bucket_from".
2. the first search slot from member variant "_last", init with 0
3. the second search slot from calculated pos "(_num_filled + _last) & _mask", it's like a rand value
*/
// key is not in this mavalue. Find a place to put it.
size_type find_empty_bucket(const size_type bucket_from, uint32_t csize) noexcept
{
(void)csize;
#if EMH_HIGH_LOAD
if (_ehead)
return pop_empty(_ehead);
#endif
auto bucket = bucket_from;
if (EMH_EMPTY(++bucket) || EMH_EMPTY(++bucket))
return bucket;
#ifdef EMH_QUADRATIC
constexpr size_type linear_probe_length = 2 * EMH_CACHE_LINE_SIZE / sizeof(Index);//16
for (size_type offset = csize + 2, step = 4; offset <= linear_probe_length; ) {
bucket = (bucket_from + offset) & _mask;
if (EMH_EMPTY(bucket) || EMH_EMPTY(++bucket))
return bucket;
offset += step; //7/8. 12. 16
}
#else
constexpr size_type quadratic_probe_length = 6u;
for (size_type offset = 4u, step = 3u; step < quadratic_probe_length; ) {
bucket = (bucket_from + offset) & _mask;
if (EMH_EMPTY(bucket) || EMH_EMPTY(++bucket))
return bucket;
offset += step++;
}
#endif
#if EMH_PREFETCH
__builtin_prefetch(static_cast<const void*>(_index + _last + 1), 0, EMH_PREFETCH);
#endif
for (;;) {
#if EMH_PACK_TAIL
//find empty bucket and skip next
if (EMH_EMPTY(_last++))// || EMH_EMPTY(_last++))
return _last++ - 1;
if (EMH_UNLIKELY(_last >= _num_buckets))
_last = 0;
auto medium = (_mask / 4 + _last++) & _mask;
if (EMH_EMPTY(medium))
return medium;
#else
if (EMH_EMPTY(++_last))// || EMH_EMPTY(++_last))
return _last;
_last &= _mask;
auto medium = (_num_buckets / 2 + _last) & _mask;
if (EMH_EMPTY(medium))// || EMH_EMPTY(++medium))
return medium;
#endif
}
return 0;
}
size_type find_last_bucket(size_type main_bucket) const
{
auto next_bucket = _index[main_bucket].next;
if (next_bucket == main_bucket)
return main_bucket;
while (true) {
const auto nbucket = _index[next_bucket].next;
if (nbucket == next_bucket)
return next_bucket;
next_bucket = nbucket;
}
}
size_type find_prev_bucket(const size_type main_bucket, const size_type bucket) const
{
auto next_bucket = _index[main_bucket].next;
if (next_bucket == bucket)
return main_bucket;
while (true) {
const auto nbucket = _index[next_bucket].next;
if (nbucket == bucket)
return next_bucket;
next_bucket = nbucket;
}
}
size_type hash_bucket(const KeyT& key) const noexcept
{
return (size_type)hash_key(key) & _mask;
}
size_type hash_main(const size_type bucket) const noexcept
{
const auto slot = _index[bucket].slot & _mask;
return (size_type)hash_key(_pairs[slot].first) & _mask;
}
#if EMH_INT_HASH
static constexpr uint64_t KC = UINT64_C(11400714819323198485);
static uint64_t hash64(uint64_t key)
{
#if __SIZEOF_INT128__ && EMH_INT_HASH == 1
__uint128_t r = key; r *= KC;
return (uint64_t)(r >> 64) + (uint64_t)r;
#elif EMH_INT_HASH == 2
//MurmurHash3Mixer
uint64_t h = key;
h ^= h >> 33;
h *= 0xff51afd7ed558ccd;
h ^= h >> 33;
h *= 0xc4ceb9fe1a85ec53;
h ^= h >> 33;
return h;
#elif _WIN64 && EMH_INT_HASH == 1
uint64_t high;
return _umul128(key, KC, &high) + high;
#elif EMH_INT_HASH == 3
auto ror = (key >> 32) | (key << 32);
auto low = key * 0xA24BAED4963EE407ull;
auto high = ror * 0x9FB21C651E98DF25ull;
auto mix = low + high;
return mix;
#elif EMH_INT_HASH == 1
uint64_t r = key * UINT64_C(0xca4bcaa75ec3f625);
return (r >> 32) + r;
#elif EMH_WYHASH64
return wyhash64(key, KC);
#else
uint64_t x = key;
x = (x ^ (x >> 30)) * UINT64_C(0xbf58476d1ce4e5b9);
x = (x ^ (x >> 27)) * UINT64_C(0x94d049bb133111eb);
x = x ^ (x >> 31);
return x;
#endif
}
#endif
#if EMH_WYHASH_HASH
//#define WYHASH_CONDOM 1
static uint64_t wymix(uint64_t A, uint64_t B)
{
#if defined(__SIZEOF_INT128__)
__uint128_t r = A; r *= B;
#if WYHASH_CONDOM2
A ^= (uint64_t)r; B ^= (uint64_t)(r >> 64);
#else
A = (uint64_t)r; B = (uint64_t)(r >> 64);
#endif
#elif defined(_MSC_VER) && defined(_M_X64)
#if WYHASH_CONDOM2
uint64_t a, b;
a = _umul128(A, B, &b);
A ^= a; B ^= b;
#else
A = _umul128(A, B, &B);
#endif
#else
uint64_t ha = A >> 32, hb = B >> 32, la = (uint32_t)A, lb = (uint32_t)B, hi, lo;
uint64_t rh = ha * hb, rm0 = ha * lb, rm1 = hb * la, rl = la * lb, t = rl + (rm0 << 32), c = t < rl;
lo = t + (rm1 << 32); c += lo < t; hi = rh + (rm0 >> 32) + (rm1 >> 32) + c;
#if WYHASH_CONDOM2
A ^= lo; B ^= hi;
#else
A = lo; B = hi;
#endif
#endif
return A ^ B;
}
//multiply and xor mix function, aka MUM
static inline uint64_t wyr8(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return v; }
static inline uint64_t wyr4(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return v; }
static inline uint64_t wyr3(const uint8_t *p, size_t k) {
return (((uint64_t)p[0]) << 16) | (((uint64_t)p[k >> 1]) << 8) | p[k - 1];
}
inline static const uint64_t secret[4] = {
0x2d358dccaa6c78a5ull, 0x8bb84b93962eacc9ull,
0x4b33a62ed433d4a3ull, 0x4d5a2da51de1aa47ull};
public:
//wyhash main function https://github.com/wangyi-fudan/wyhash
static uint64_t wyhashstr(const char *key, const size_t len)
{
uint64_t a = 0, b = 0, seed = secret[0];
const uint8_t *p = (const uint8_t*)key;
if (EMH_LIKELY(len <= 16)) {
if (EMH_LIKELY(len >= 4)) {
const auto half = (len >> 3) << 2;
a = (wyr4(p) << 32U) | wyr4(p + half); p += len - 4;
b = (wyr4(p) << 32U) | wyr4(p - half);
} else if (len) {
a = wyr3(p, len);
}
} else {
size_t i = len;
if (EMH_UNLIKELY(i > 48)) {
uint64_t see1 = seed, see2 = seed;
do {
seed = wymix(wyr8(p + 0) ^ secret[1], wyr8(p + 8) ^ seed);
see1 = wymix(wyr8(p + 16) ^ secret[2], wyr8(p + 24) ^ see1);
see2 = wymix(wyr8(p + 32) ^ secret[3], wyr8(p + 40) ^ see2);
p += 48; i -= 48;
} while (EMH_LIKELY(i > 48));
seed ^= see1 ^ see2;
}
while (i > 16) {
seed = wymix(wyr8(p) ^ secret[1], wyr8(p + 8) ^ seed);
i -= 16; p += 16;
}
a = wyr8(p + i - 16);
b = wyr8(p + i - 8);
}
return wymix(secret[1] ^ len, wymix(a ^ secret[1], b ^ seed));
}
#endif
private:
template<typename UType, typename std::enable_if<std::is_integral<UType>::value, uint32_t>::type = 0>
inline uint64_t hash_key(const UType key) const
{
#if EMH_INT_HASH
return hash64(key);
#elif EMH_IDENTITY_HASH
return key + (key >> 24);
#else
return _hasher(key);
#endif
}
template<typename UType, typename std::enable_if<std::is_same<UType, std::string>::value, uint32_t>::type = 0>
inline uint64_t hash_key(const UType& key) const
{
#if EMH_WYHASH_HASH
return wyhashstr(key.data(), key.size());
#else
return _hasher(key);
#endif
}
template<typename UType, typename std::enable_if<!std::is_integral<UType>::value && !std::is_same<UType, std::string>::value, uint32_t>::type = 0>
inline uint64_t hash_key(const UType& key) const
{
return _hasher(key);
}
private:
Index* _index;
value_type*_pairs;
HashT _hasher;
EqT _eq;
uint32_t _mlf;
size_type _mask;
size_type _num_buckets;
size_type _num_filled;
size_type _last;
#if EMH_HIGH_LOAD
size_type _ehead;
#endif
size_type _etail;
};
} // namespace emhash
|