summaryrefslogtreecommitdiffstats
path: root/deps/include/spdlog/details/mpmc_blocking_q.h
blob: a65b7f88971b8671b44981a98c78702efef90cf3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// Copyright(c) 2015-present, Gabi Melman & spdlog contributors.
// Distributed under the MIT License (http://opensource.org/licenses/MIT)

#pragma once

// multi producer-multi consumer blocking queue.
// enqueue(..) - will block until room found to put the new message.
// enqueue_nowait(..) - will return immediately with false if no room left in
// the queue.
// dequeue_for(..) - will block until the queue is not empty or timeout have
// passed.

#include <spdlog/details/circular_q.h>

#include <atomic>
#include <condition_variable>
#include <mutex>

namespace spdlog {
namespace details {

template <typename T>
class mpmc_blocking_queue {
public:
    using item_type = T;
    explicit mpmc_blocking_queue(size_t max_items)
        : q_(max_items) {}

#ifndef __MINGW32__
    // try to enqueue and block if no room left
    void enqueue(T &&item) {
        {
            std::unique_lock<std::mutex> lock(queue_mutex_);
            pop_cv_.wait(lock, [this] { return !this->q_.full(); });
            q_.push_back(std::move(item));
        }
        push_cv_.notify_one();
    }

    // enqueue immediately. overrun oldest message in the queue if no room left.
    void enqueue_nowait(T &&item) {
        {
            std::unique_lock<std::mutex> lock(queue_mutex_);
            q_.push_back(std::move(item));
        }
        push_cv_.notify_one();
    }

    void enqueue_if_have_room(T &&item) {
        bool pushed = false;
        {
            std::unique_lock<std::mutex> lock(queue_mutex_);
            if (!q_.full()) {
                q_.push_back(std::move(item));
                pushed = true;
            }
        }

        if (pushed) {
            push_cv_.notify_one();
        } else {
            ++discard_counter_;
        }
    }

    // dequeue with a timeout.
    // Return true, if succeeded dequeue item, false otherwise
    bool dequeue_for(T &popped_item, std::chrono::milliseconds wait_duration) {
        {
            std::unique_lock<std::mutex> lock(queue_mutex_);
            if (!push_cv_.wait_for(lock, wait_duration, [this] { return !this->q_.empty(); })) {
                return false;
            }
            popped_item = std::move(q_.front());
            q_.pop_front();
        }
        pop_cv_.notify_one();
        return true;
    }

    // blocking dequeue without a timeout.
    void dequeue(T &popped_item) {
        {
            std::unique_lock<std::mutex> lock(queue_mutex_);
            push_cv_.wait(lock, [this] { return !this->q_.empty(); });
            popped_item = std::move(q_.front());
            q_.pop_front();
        }
        pop_cv_.notify_one();
    }

#else
    // apparently mingw deadlocks if the mutex is released before cv.notify_one(),
    // so release the mutex at the very end each function.

    // try to enqueue and block if no room left
    void enqueue(T &&item) {
        std::unique_lock<std::mutex> lock(queue_mutex_);
        pop_cv_.wait(lock, [this] { return !this->q_.full(); });
        q_.push_back(std::move(item));
        push_cv_.notify_one();
    }

    // enqueue immediately. overrun oldest message in the queue if no room left.
    void enqueue_nowait(T &&item) {
        std::unique_lock<std::mutex> lock(queue_mutex_);
        q_.push_back(std::move(item));
        push_cv_.notify_one();
    }

    void enqueue_if_have_room(T &&item) {
        bool pushed = false;
        std::unique_lock<std::mutex> lock(queue_mutex_);
        if (!q_.full()) {
            q_.push_back(std::move(item));
            pushed = true;
        }

        if (pushed) {
            push_cv_.notify_one();
        } else {
            ++discard_counter_;
        }
    }

    // dequeue with a timeout.
    // Return true, if succeeded dequeue item, false otherwise
    bool dequeue_for(T &popped_item, std::chrono::milliseconds wait_duration) {
        std::unique_lock<std::mutex> lock(queue_mutex_);
        if (!push_cv_.wait_for(lock, wait_duration, [this] { return !this->q_.empty(); })) {
            return false;
        }
        popped_item = std::move(q_.front());
        q_.pop_front();
        pop_cv_.notify_one();
        return true;
    }

    // blocking dequeue without a timeout.
    void dequeue(T &popped_item) {
        std::unique_lock<std::mutex> lock(queue_mutex_);
        push_cv_.wait(lock, [this] { return !this->q_.empty(); });
        popped_item = std::move(q_.front());
        q_.pop_front();
        pop_cv_.notify_one();
    }

#endif

    size_t overrun_counter() {
        std::lock_guard<std::mutex> lock(queue_mutex_);
        return q_.overrun_counter();
    }

    size_t discard_counter() { return discard_counter_.load(std::memory_order_relaxed); }

    size_t size() {
        std::lock_guard<std::mutex> lock(queue_mutex_);
        return q_.size();
    }

    void reset_overrun_counter() {
        std::lock_guard<std::mutex> lock(queue_mutex_);
        q_.reset_overrun_counter();
    }

    void reset_discard_counter() { discard_counter_.store(0, std::memory_order_relaxed); }

private:
    std::mutex queue_mutex_;
    std::condition_variable push_cv_;
    std::condition_variable pop_cv_;
    spdlog::details::circular_q<T> q_;
    std::atomic<size_t> discard_counter_{0};
};
}  // namespace details
}  // namespace spdlog