1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
#include "shared/pch.hh"
#include "shared/entity/collision.hh"
#include "core/math/constexpr.hh"
#include "shared/entity/gravity.hh"
#include "shared/entity/grounded.hh"
#include "shared/entity/transform.hh"
#include "shared/entity/velocity.hh"
#include "shared/world/dimension.hh"
#include "shared/world/voxel_registry.hh"
#include "shared/coord.hh"
#include "shared/globals.hh"
static int vgrid_collide(const world::Dimension* dimension, int d, entity::Collision& collision, entity::Transform& transform,
entity::Velocity& velocity, world::VoxelMaterial& touch_surface)
{
const auto move = globals::fixed_frametime * velocity.value[d];
const auto move_sign = math::sign<int>(move);
const auto& ref_aabb = collision.aabb;
const auto current_aabb = ref_aabb.push(transform.local);
auto next_aabb = math::AABBf(current_aabb);
next_aabb.min[d] += move;
next_aabb.max[d] += move;
local_pos lpos_min;
lpos_min.x = static_cast<local_pos::value_type>(glm::floor(next_aabb.min.x));
lpos_min.y = static_cast<local_pos::value_type>(glm::floor(next_aabb.min.y));
lpos_min.z = static_cast<local_pos::value_type>(glm::floor(next_aabb.min.z));
local_pos lpos_max;
lpos_max.x = static_cast<local_pos::value_type>(glm::ceil(next_aabb.max.x));
lpos_max.y = static_cast<local_pos::value_type>(glm::ceil(next_aabb.max.y));
lpos_max.z = static_cast<local_pos::value_type>(glm::ceil(next_aabb.max.z));
// Other axes
const int u = (d + 1) % 3;
const int v = (d + 2) % 3;
local_pos::value_type ddir;
local_pos::value_type dmin;
local_pos::value_type dmax;
if(move < 0.0f) {
ddir = local_pos::value_type(+1);
dmin = lpos_min[d];
dmax = lpos_max[d];
}
else {
ddir = local_pos::value_type(-1);
dmin = lpos_max[d];
dmax = lpos_min[d];
}
world::VoxelTouch latch_touch = world::VTOUCH_NONE;
glm::fvec3 latch_values = glm::fvec3(0.0f, 0.0f, 0.0f);
world::VoxelMaterial latch_surface = world::VMAT_UNKNOWN;
math::AABBf latch_vbox;
for(auto i = dmin; i != dmax; i += ddir) {
for(auto j = lpos_min[u]; j < lpos_max[u]; ++j)
for(auto k = lpos_min[v]; k < lpos_max[v]; ++k) {
local_pos lpos;
lpos[d] = i;
lpos[u] = j;
lpos[v] = k;
auto vpos = coord::to_voxel(transform.chunk, lpos);
auto voxel = dimension->get_voxel(vpos);
if(voxel == nullptr) {
// Don't collide with something
// that we assume to be nothing
continue;
}
math::AABBf vbox(voxel->get_collision().push(lpos));
if(!next_aabb.intersect(vbox)) {
// No intersection between the voxel
// and the entity's collision hull
continue;
}
if(voxel->is_touch_type<world::VTOUCH_SOLID>()) {
// Solid touch type makes a collision
// response whenever it is encountered
velocity.value[d] = 0.0f;
touch_surface = voxel->get_surface_material();
return move_sign;
}
// In case of other touch types, they
// are latched and the last ever touch
// type is then responded to
if(voxel->get_touch_type() != world::VTOUCH_NONE) {
latch_touch = voxel->get_touch_type();
latch_values = voxel->get_touch_values();
latch_surface = voxel->get_surface_material();
latch_vbox = vbox;
continue;
}
}
}
if(latch_touch != world::VTOUCH_NONE) {
if(latch_touch == world::VTOUCH_BOUNCE) {
const auto move_distance = glm::abs(current_aabb.min[d] - next_aabb.min[d]);
const auto threshold = 2.0f * globals::fixed_frametime;
if(move_distance > threshold) {
velocity.value[d] *= -latch_values[d];
}
else {
velocity.value[d] = 0.0f;
}
touch_surface = latch_surface;
return move_sign;
}
if(latch_touch == world::VTOUCH_SINK) {
velocity.value[d] *= latch_values[d];
touch_surface = latch_surface;
return move_sign;
}
}
return 0;
}
void entity::Collision::fixed_update(world::Dimension* dimension)
{
// FIXME: this isn't particularly accurate considering
// some voxels might be passable and some other voxels
// might apply some slowing factor; what I might do in the
// future is to add a specific value to the voxel registry
// entries that would specify the amount of force we apply
// to prevent player movement inside a specific voxel, plus
// we shouldn't treat all voxels as full cubes if we want
// to support slabs, stairs and non-full liquid voxels in the future
auto group = dimension->entities.group<entity::Collision>(entt::get<entity::Transform, entity::Velocity>);
for(auto [entity, collision, transform, velocity] : group.each()) {
auto surface = world::VMAT_UNKNOWN;
auto vertical_move = vgrid_collide(dimension, 1, collision, transform, velocity, surface);
if(dimension->entities.any_of<entity::Gravity>(entity)) {
if(vertical_move == math::sign<int>(dimension->get_gravity())) {
dimension->entities.emplace_or_replace<entity::Grounded>(entity, entity::Grounded { surface });
}
else {
dimension->entities.remove<entity::Grounded>(entity);
}
}
else {
// The entity cannot be grounded because the component
// setup of said entity should not let it comprehend the
// concept of resting on the ground (it flies around)
dimension->entities.remove<entity::Grounded>(entity);
}
vgrid_collide(dimension, 0, collision, transform, velocity, surface);
vgrid_collide(dimension, 2, collision, transform, velocity, surface);
}
}
|